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What we do

▶ Canonical framework to study aggregate fluctuations

▶ aggregate shocks + incomplete markets + het. agents (HA)
▶ Challenge: equilibria are difficult to compute

▶ Existing methods often rely on 1st order appr. and MIT shocks

▶ cannot study welfare from stabilization policies, risk, asset prices,
portfolio choice

▶ This paper: proposes a novel method to approx HA economies

▶ fast, efficient, and easy to implement

▶ scalable to higher-order approximations



Key Insights

▶ Reformulate perturbations (at any order) using directional derivatives

▶ values of directional derivatives remain low dimensional

▶ solve small-dimensional linear systems with analytically solved
closed-form coefficients

▶ avoids refinements such as quadratic matrix equations and pruning

▶ Show the reformulation extends to HA economies

▶ infinite-dimensional state

▶ kinks in policy function

▶ Implementation needs only

▶ steady-state objects using off-the-shelf algorithms

▶ set of equations characterizing equilibrium



Plan

▶ Describe the method

▶ First-order

▶ Second-order

▶ Discuss differences from literature

▶ State-space methods (Reiter, etc)

▶ Sequence-space methods (Auclert et al, Boppart et al,etc)

▶ Applications

▶ Speed/Accuracy

▶ Welfare from stabilization dynamics

▶ Effects of uncertainty

▶ Portfolio problems



Notation

▶ xi,t , Xt : individual and aggregate endogenous variables

▶ ai,t ∈ xi,t , At ∈ Xt : pre-determined variables

▶ equivalently for some selection matrices p, P as

ai,t = pxi,t , At = PXt

▶ θi,t , Θt : individual and aggregate exogenous variables

▶ for this talk: θi,t ,Θt are scalars, follow AR(1) processes

θi,t = ρθθi,t−1 + εi,t

Θt = ρΘΘt−1 + Et

▶ Yt = [Θt ,PXt−1,Xt ,EtXt+1]
T: aggregate variables relevant for

equilibrium in period t



Example: Krusell-Smith

▶ Households

max
{ci,t ,ki,t}t≥0

E0

∞∑
t=0

βtU(ci,t)

ci,t + ki,t = (1 + Rt − δ) ki,t−1 +Wt exp (θi,t)

ki,t ≥ 0

▶ Firms

max
Nt ,Kt

exp (Θt)K
α
t N

1−α
t −WtNt − RtKt

▶ Market clearings

Kt =

∫
ki,t−1di , Nt =

∫
exp (θi,t) di



Mapping of KS economy

▶ Variables:
xi,t = [ki,t , ci,t , λi,t , ζi,t ]

T
, ai,t = ki,t

Xt = [At ,Kt ,Wt ,Rt ]
T
, Yt = [Θt ,At−1,Xt ]

T
, At =

∫
ai,tdi

▶ Optimality conditions for agents with idiosyncratic risk:

ci,t + ki,t − (1 + Rt − δ) ki,t−1 −Wt exp(θi,t) = 0

λi,t − (1 + Rt − δ) uc(ci,t) = 0

uc(ci,t) + ζi,t − βEtλi,t+1 = 0

ki,tζi,t = 0

▶ All other conditions:

At −
∫

ki,tdi = 0

At−1 − Kt = 0

Rt − α exp (Θt)K
α−1
t = 0

Wt − (1− α) exp (Θt)K
α
t = 0



Canonical HA representation

▶ Optimality conditions of agents with idiosyncratic shocks:

F (θi,t , ai,t−1, xi,t ,Ei,txi,t+1,Yt) = 0 for all i , t

▶ inequality constraints that matter are folded as complementary
slackness conditions

▶ All other equilibrium conditions:

G

(∫
xi,tdi ,Yt

)
= 0 for all t

▶ Equilibrium: A stochastic sequence {Xt (E t) , xt (E t , εt)}t,E t ,εt that
satisfies equations F and G given initial conditions(
{ai,−1, θi,0}i ,A−1

)



Recursive Representation

Let Z = [A,Θ,Ω]T : aggregate state and (a, θ,Z ) the individual states

▶ x (a, θ,Z ), X (Z ), Ω (Z ) are indiv and agg policy functions

▶ a (a, θ,Z ) = px (z , θ,Z )

▶ Recursive representation

F
(
a, θ, x (a, θ,Z ) ,Eε,Ex ,Y (Z )

)
= 0

G

(∫
x (·, ·,Z ) dΩ,Y (Z )

)
= 0

Ω (Z ) ⟨a′, θ′⟩ =
∫ ∫

ι (a(a, θ,Z ) ≤ a′) ι(ρθθ+ε ≤ θ′)µ (ε) dεdΩ ⟨a, θ⟩ .

where Y (Z ) =
[
Θ,A,X (Z ) ,EEX

]
.T



Perturbational approach

▶ Use the recursive (state-space) representation of equilibrium

▶ SS of economy without aggregate shocks, Z∗ = [0,A∗,Ω∗]T

▶ Perturb aggregate stochastic process by scalar σ ≥ 0

Θt = ρΘΘt−1 + σEt

▶ Use Taylor expansions w.r.t. σ to find various orders of eqm
approximations
▶ technical conditions for stability and differentiability details

▶ X , Ω, x (a, θ),...: policy functions at SS, (Z , σ) = (Z∗, 0)



Derivatives

▶ Gx , GY , GxY , Fx(a, θ), ...: derivatives of G and F , evaluated at SS

▶ XZ , XZZ , xZ (a, θ), ZZ , ...: (Frechet) derivatives w.r.t. Z

▶ xa (a, θ) , xaZ (a, θ) , ....: derivatives w.r.t. a are generalized functions
details



Directional derivatives: reminder

▶ XZ is a large-dimensional object in HA economy

▶ partial derivatives of X w.r.t. each dimension of Z

▶ dimX Z = dimX × dimZ

▶ XZ · Ẑ is a value of this derivative in direction Ẑ :

XZ · Ẑ = lim
α→0

1

α

(
X
(
Z∗ + αẐ ; 0

)
− X (Z∗; 0)

)
▶ XZ · Ẑ is always a small dimensional

▶ dim
(
X Z · Ẑ

)
= dimX

▶ Analogous observation applies to higher orders:

▶ dimX ZZ = dimX × dimZ × dimZ

▶ dim
(
X ZZ · (Ẑ ′, Ẑ ′′)

)
= dimX



Our approach

▶ To approximate equilibrium, one needs to know not the whole
derivative, but only its value in specific directions
▶ e.g., 1st order is approximated by{

X̂t

}
t
:=

{
X Z · Ẑt

}
t

for a specific sequence of directions
{
Ẑt

}
t

▶ in HA economies, dimX Z ,t << dimX Z

▶ Derive analytically expressions for directional values of those
derivatives

▶ Show that this system is easy and quick to construct and solve
numerically



1st order approx as directional derivatives

▶ To the 1st order:

Xt

(
E t
)
= X +

t∑
s=0

X̂t−sEs + O
(
∥E∥2

)
,

where
Ẑ0 := [1, 0, 0]T , Ẑt := ZZ · Ẑt−1,

X̂t := XZ · Ẑt .

▶ Economic intuition:

▶ {Ẑt}t traces out LoM for Ω following a unit shock to Θ in period 0
(aka “MIT shock”)

▶
{
X̂t

}
t
is the impulse response to an MIT shock



Step 1: differentiate G
(∫

xdΩ,Y
)
= 0

▶ First derivative of G in direction Ẑt :

GY Ŷt + Gx

(∫
xdΩ

)
Z

· Ẑt = 0,

where

Ŷt =
[
ρtΘ,PX̂t−1, X̂t , X̂t+1

]T
and (∫

xdΩ

)
Z

· Ẑt =

∫
xZ · Ẑt︸ ︷︷ ︸

x̂t

dΩ∗ +

∫
xd ΩZ · Ẑt︸ ︷︷ ︸

Ω̂t

▶ We already know dΩ∗, Gx , GY , P, ρ
t
Θ

▶ If we can express x̂t and Ω̂t in terms of
{
X̂s

}
s
, we found a way to

solve 1st order
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Step 2: differentiate F
(
a, θ, x ,Eε,Ex ,Y

)
= 0

▶ First derivative of F in direction Ẑt :

x̂t (a, θ) =
∞∑
s=0

xs (a, θ) Ŷt+s

where

x0 (a, θ) =− (Fx (a, θ) + Fxe (a, θ)E [xa|a, θ] p)−1 FY (a, θ) ,

xs+1 (a, θ) =− (Fx (a, θ) + Fxe (a, θ)E [xa|a, θ] p)−1 Fxe (a, θ)E [xs |a, θ]

▶ Intuition: xs measures ∂xt/∂Yt+s

▶ RHS of (1) and (2) is known already =⇒ easy and fast to use these
formulas to compute {xs}s
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Step 3: differentiate Ω

▶ Trio of operators, M, L(a), I(a):

(M · y) ⟨a′, θ′⟩ :=
∫

Λ(a′, θ′, a, θ)y (a, θ) dΩ∗ ⟨a, θ⟩ ,(
L(a) · y

)
⟨a′, θ′⟩ :=

∫
Λ(a′, θ′, a, θ)aa (a, θ) y (a, θ) dadθ,

I(a) · y :=

∫
xa(θ, a)y (θ, a) dadθ.

▶ Intuition: suppose indiv. policy functions are perturbed by â0 (z , θ)

▶ effect on agg. distribution in pd 1: d
dθ
Ω̂1 = −M · â0

▶ effect on agg. distribution in pd 2: d
dθ
Ω̂2 = L(a) · d

dθ
Ω̂1

▶ Differentiate Ω and plug definition of Ẑt :

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −M · ât∫

xdΩ̂t = −I(a) · d

dθ
Ω̂t
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d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −M · ât∫

xdΩ̂t = −I(a) · d

dθ
Ω̂t



Put three steps together

▶
{
X̂t

}
t
solves

GY Ŷt + Gx

∞∑
s=0

Jt,s Ŷs = 0 for all t

Ŷt =
[
ρtΘ,PX̂t−1, X̂t , X̂t+1

]T
where J0s =

∫
xsdΩ

∗

Jt,s = Jt−1,s−1 + I(a) ·
(
L(a)

)t−1

· M · pxs .

and PX̂−1 = 0, and limt→∞ X̂t = 0.



Higher-order approximations

▶ Second order requires tracking interactions/nonlinearity terms and
precautionary motive terms

▶ Our approach from first order extends with minimal changes to
higher orders

▶ exactly the same steps to derive approx terms

▶ almost the same mathematical form of equations

▶ many 1st order terms get recycled for higher-order computations



Understanding the structure of second-derivatives
▶ Consider a composite function function X ◦ Z and perturb Z from

Z∗ → Z∗ + α′Ẑ ′ + α′′Ẑ ′′.

lim
α′′→0

lim
α′→0

1

α′′
1

α′

[
X

(
Z
(
Z∗ + α′Ẑ ′ + α′′Ẑ ′′

))
− X

(
Z (Z∗)

)]

= XZ︸︷︷︸
1st order policy function

·ZZZ · (Ẑ ′, Ẑ ′′)︸ ︷︷ ︸
2nd order state

+ XZZ︸︷︷︸
2nd order policy function

· (ZZ · Ẑ ′,ZZ · Ẑ ′′)︸ ︷︷ ︸
1st order state

.

▶ Similar logic for second-derivatives with respect to σ
▶ exploit that first-order effects of σ are zero
▶ σ appears directly in policy functions

▶ Relevant directions: In addition to directions
{
Ẑt

}
from before, we

need to track
{
Ẑt,k

}
and

{
Ẑσσ,t

}
Ẑt,k = ZZ · Ẑt−1,k−1 + ZZZ ·

(
Ẑt−1, Ẑk−1

)
Ẑσσ,t = ZZ · Ẑσσ,t−1 + Zσσ



Second-order expansion

▶ Second-order approximation: Xt satisfies

Xt

(
E t
)
= ...+

1

2

(
t∑

s=0

t∑
m=0

X̂t−s,t−mEsEm + X̂σσ,t

)
+ O

(
∥E∥3

)
,

▶
{
X̂t,k

}
t,k

and
{
X̂σσ,t

}
t
are defined by

X̂t,k := XZ · Ẑt,k + XZZ ·
(
Ẑt , Ẑk

)
Xσσ,t := XZ · Ẑσσ,t + Xσσ

with Ẑ0,k = Ẑt,0 = Ẑσσ,0 = 0.

▶ Automatically “pruned” simulation paths (Lombardo, Uhlig)



Need to find {X̂t,t+k}t and {X̂σσ,t}t
▶ For second-order interaction terms differentiate mapping G

▶ once in direction Ẑt,k and twice in directions Ẑt , Ẑk

▶ For precautionary terms differentiate mapping G in

▶ once in direction Ẑσσ,t and twice w.r.t σ

▶ End up with unknown objects like
{
x̂t,k ˆ,Ωt,k

}
,
{
x̂σσ,t , Ω̂σσ,t

}
▶ use mapping F and Ω to express them in terms of {X̂t,t+k}t ,

{X̂σσ,t}t and other terms that are known



Intermediate terms:
{
x̂t,kΩ̂t,k

}
,
{
x̂σσ,tΩ̂σσ,t

}
▶ x̂t,t+k (a, θ) and x̂σσ,t (a, θ) satisfy

x̂t,t+k (a, θ) =
∞∑
s=0

xs (a, θ) Ŷt+s,t+k+s︸ ︷︷ ︸
1st order policy,2 nd orde state

+ xt,t+k (a, θ)︸ ︷︷ ︸
2nd order policy, first-order states

,

x̂σσ,t (a, θ) =
∞∑
s=0

xs (a, θ) Ŷσσ,t+s + xσσ (a, θ) .

▶ d
dθ Ω̂t,t+k and d

dθ Ω̂σ,σ,t+1 satisfy

d

dθ
Ω̂t+1,t+k+1 = L(a) · d

dθ
Ω̂t,t+k −M · ât,t+k︸ ︷︷ ︸

1st order policy, 2nd orde state

+
d

da
ct,t+k − bt,t+k︸ ︷︷ ︸

2nd order policy, first-order states

,

d

dθ
Ω̂σ,σ,t+1 = L(a) · d

dθ
Ω̂σ,σ,t −M · âσ,σ,t .

with closed-form expressions for all coefficients



2nd order solution

▶ {X̂t,t+k}t satisfies

GY ŶZZ ,t,t+k + Ĝt,t+k + Gx

∞∑
s=0

Jt,s Ŷs,s+k + GxHt,t+k = 0 for all t,

where Ĝt,t+k = GYY · (Ŷt , Ŷt+k) and Ŷt =
[
Ŷt ,
(∫

xdΩ
)
Z
· Ẑt

]T
.

▶ {X̂σσ,t}t satisfies

GY Ŷσσ,t + Gx

∞∑
s=0

Jt,s Ŷσσ,s + GxHσσ,t = 0 for all t.

▶ Boundary conditions

lim
t→∞

X̂t,t+k = 0, lim
t→∞

X̂σσ,t − X̂σσ,t−1 = 0.

▶ Terms in red: new, calculated similarly to terms like Gx , Jt,s and
derived in closed-form



Numerical Implementation

▶ User inputs: SS policy functions (splines) and equations describing
competitive equilibrium

▶ First-order: need Gx , GY and {Jt,s}t,s to solve

GY Ŷt + Gx

∞∑
s=0

Jt,s Ŷs = 0 for all t

▶ Gx , GY automatically differentiate G and evaluate at SS

▶ Since Jt,s = Jt−1,s−1 + I(a) ·
(
L(a)

)t−1

· M · pxs need

▶ Operators I(a), L(a) and M: sparse matrices using SS transition
matrix

▶ Coeffs {xt}t : recursively using linear algebra with pre-computed basis
matrices

▶ Solve the linear system {X̂t}Tt=0 by truncation

▶ Second-order follows similarly
▶ need to keep track of kinks as the first-derivative function jumps

details



Comparison to other perturbation approaches

▶ Comparison to Reiter (2009):

▶ ours is much faster to the 1st order (no need to compute X Z , ZZ )
▶ ours generalizes to higher orders (histogram method fails beyond 1st

order) details

▶ Comparison to Auclert et al (2022):

▶ 1st order: we construct same theoretical objects in a different way →
two methods produce the same solution as grid size goes to zero

▶ ours a bit faster (closed form expressions give xs = ∂xt/∂Yt+s )
▶ ours generalizes to higher orders (histogram method fails beyond 1st

order, MIT shocks do not capture effects of risk)

▶ Comparison to Bhandari et al (2021):

▶ they use similar perturbational techniques but with respect to (E , ε)
▶ their approach does not work when policy functions x have kinks

▶ Bilal (2023) and Alvarez et al (2023): Continuous-time settings
▶ share with us the use of analytic derivatives and linear operators
▶ underlying mathematics quite different and the relative advantages

vary by application
▶ dont allow for endogenous kinks, portfolio or heteroskedastic shocks



Numerical illustrations

▶ Calibrated KS economy with capital adjustment costs

▶ adjustment costs match volatility of equity returns

▶ Some experiments

1. computational speed, comparison with alternatives

2. optimal portfolios of stocks and bonds in KS economy

3. effect of stochastic volatility shocks

4. welfare of stabilization policies, failure of histogram method



1. Comparisons

Table: COMPUTATIONAL SPEED: FIRST AND SECOND ORDER

First Order Second Order

Step Time Step Time (ZZ ) Time(σσ)

Additional First-Order Terms 0.63s
Compute {xs} 0.11s Compute {xt,k} and {xσσ} 1.28s 0.25s
Compute M,L and {ât}t 0.02s Compute {bt,k , ct,k} and {bσσ} 0.27s
Compute {Jt,s}t,s 0.21s Compute Ht,k and Hσσ,t 0.18s 0.00s
Compute {X̂t}t 0.10s Compute {X̂ t,k}t,k , {X̂σσ,t}t 0.20s 0.03s

Total 0.44s 2.57s 0.58s

ABRS 0.51s



1. Simulations: E t = (1, 0, 0, 0, . . .)
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2. Household Portfolios in GE

▶ Consider a two asset extension – risky capital and risk-free bond – of
Krusell and Smith economy

▶ Cannot be solved directly with conventional perturbational
techniques:

▶ optimal portfolios are undetermined at the zeroth order

▶ optimal portfolios depend on second-order properties (risk) but
already affect first-order impulse responses

▶ Before we solved for ˆ{Xt} so that G () was satisfied by

characterizing individual behavior x̂t and aggregation Ω̂t

▶ Same approach but now x̂t will depend on hh portfolios



2. Household Portfolios in GE

▶ Merton-Samuelson : portfolios (expected excess returns, hedging)

0 = Eε,E [λRx ] ≈ Eε

[
λ|a, θ

]
R

x
σσ︸ ︷︷ ︸

expected excess returns

+Eε

[
λ̂
(
portfolio,

{
X̂t

})
R̂xvar (E) |a, θ

]
︸ ︷︷ ︸

hedging

▶ Conditional on distribution of hh portfolios
▶ Expected excess returns, R

x
σσ clear market for risky capital

▶ R̂x
t ∈ X̂t solve G () as before

▶ Seemingly big fixed point!

▶ Main result: {X̂t}t are the solution to

GY Ŷt + Gx

∞∑
s=0

(
Jt,s + JPPt,s

)
Ŷs = 0 for all t

where JPPt,s has a similar structure to Jt,s can be derived in closed form.
▶ by product: holding of risky assets k(a, θ)



2. Household Portfolios in GE

Figure: PORTFOLIOS
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3. Effects of Uncertainty

▶ Large empirical literature about macroeconomic uncertainty

▶ What are the aggregate and distributional effects of uncertainty?

▶ Calibrate uncertainty shock to capture changes in VIX

▶ Modify TFP process to Et =
√

1 + Υt−1EΘ,t where

Υt = ρΥΥt−1 + EΥ,t .



3. Effects of Uncertainty

▶ Traditional perturbation methods (see Villaverde) scale σ [EΘ,t , EΥ,t ]
▶ effects of EΥ,t only show up at third-order

▶ Our approach: Scale σEt
▶ “point” of approximation Z∗ (Υ) =

[
0,PX ,Υ

]
▶ effects of time-varying vol at second-order
▶ directions Ẑσσ,t become stochastic directions Ẑσσ,t

(
E t
Υ

)
▶ Main result:

X̂Υ
σσ,t(E t

Υ) = XZ · ẐΥ
σσ,t(E t

Υ) = X̂σσ,t +
t∑

s=0

X̂ SV
σσ,t−sEΥ,s+

and sequence {X̂ SV
σσ,t}t satisfies

GY Ŷ
SV
σσ,t + Gx

∞∑
s=0

Jt,s Ŷ
SV
σσ,s + GxH

SV
σσ,t = 0 for all t,

where HSV
σσ,t can be constructed recursively (see paper)



3. Welfare impact ↑of VIX by 5X
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4. Stabilization Policy

▶ Simple model of stabilization policy: choose optimal τΘ in

τt = τΘΘt

▶ Stabilization policy is a second order question

▶ τΘ has no effect on welfare to the first order

▶ Compare answers if we tried to track distribution using the
histogram method



4. Stabilization Policy
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▶ Optimal τ∗Θ requires raises taxes by 0.84pp for 1% drop in aggregate
TFP

▶ Histogram method implies incorrect level and gradient of welfare
τ∗,histΘ = −1.04pp



5. Transition Dynamics

▶ So far initial conditions = steady-state...Now consider

(A−1,Ω0) ̸= (A∗,Ω∗)

▶ Useful to study tax-reforms and other permenant changes in
primitives

▶ Represent the deterministic path using directional derivatives

▶ almost the same calculations!



5. Transition Dynamics
Before... For transition dynamics...

Approximation

Xt (E t) ≈ X +
∑t

s=0 X̂t−sEs E0Xt ≈ X + X̂TD
t

X̂t := XZ · Ẑt X̂TD
t := XZ · ẐTD

t

Relevant directions

Ẑt := ZZ · Ẑt−1 ẐTD
t := ZZ · ẐTD

t−1

Ẑ0 := [1, 0, 0]T ẐTD
0 := [0,A−1 − A∗,Ω−1 − Ω∗]T

Solution{
X̂t

}
solved

{
X̂TD
t

}
solves

GY Ŷt + Gx

∑∞
s=0 Jt,s Ŷs = 0 GY Ŷ

TD
t + Gx

∑∞
s=0 Jt,s Ŷ

TD
s + GxJ

TD
t = 0

JTDt = I(a) ·
(
L(a)

)t−1 ·
(
− d

dθ Ω̂
TD
0

)



Conclusions

▶ Tool for higher order approximations of heterogeneous agent models

▶ Opens up plenty of interesting applications in macro and finance



Appendix



Non-negativity

▶ Occasionally borrowing limits impose inequality constraints on
choices and multipliers

ki,t ≥ 0, ζi,t ≥ 0.

▶ Since these constraints “can” bind, apriori they may impose
restrictions on the local behavior of policy functions
(kZ (a, θ,Z ;σ) · Ẑ , ζZ (a, θ,Z ;σ) · Ẑ ) derived from other optimality
conditions.

▶ However completementary slackness conditions restrict those local
properties

k (a, θ) > 0 =⇒ ζZ (a, θ,Z ;σ) · Ẑ = 0

ζ (a, θ) > 0 =⇒ kZ (a, θ,Z ;σ) · Ẑ = 0

▶ Thus when k (a, θ) > 0 (symmetric argument for the other case)
▶ k (a, θ,Z ;σ) locally satisfies ki,t ≥ 0
▶ ζ (a, θ,Z ;σ) is locally unaffected so satisfies ζi,t ≥ 0



Technical Assumptions

Let Z t := Z (Z (....Z︸ ︷︷ ︸
t times

(Z0))).

1. Et is mean-zero i.i.d with bounded support

2. X (Z ;σ) is sufficiently differentiable at (Z∗, 0);

3. limt→∞ Z t(Z0) = Z∗ for all Z0 in a neighborhood of Z∗.

4. x (a, θ,Z ;σ) is continuous and piecewise sufficiently differentiable at
(Z∗, 0) for all (a, θ) with finitely many points of non-differentiability

5. The marginal distribution
∫
Ω∗dθ has a finite number of

mass-points {a∗n}n
back



Generalized functions

▶ Linear functionals

d [ϕ] =

∫
d (x)ϕ (x) dx

example: Dirac delta δ is a genralized function with

δ[ϕ] =

∫
ϕ (x) δ (x) dx = ϕ (0)

▶ Convenient to handle kinks

d [ϕ] =

∫
d (x)︸ ︷︷ ︸

may have kinks

× ϕ (x)︸ ︷︷ ︸
“nice” functions

▶ Easy rules for differentiation

d ′[ϕ] = −d [ϕ′]

example: Indicator function that is, d(x) = 1 x ≥ 0 and d(x) = 0
otherwise.

d ′ = −
∫ ∞

0

ϕ′ (x) = ϕ (0) =

∫
δ (x)ϕ (x) = δ

back



How Kinks Work
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How Kinks Work
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∆area = −∆point of jump× size of the jump



How Kinks Work

▶ Policy functions have kinks
▶ Suppose the x (a, θ,Z) has a kink at a = κ (θ,Z)
▶ derivatives of policy functions will have jumps

▶ When the aggregate state changes

xaZ (a, θ) · Ẑ = x̊aZ (a, θ) · Ẑ︸ ︷︷ ︸
classical

− δ(a− κ(θ))x∆a (θ)κZ (θ) · Ẑ︸ ︷︷ ︸
generalized function

▶ So integrals∫∫
xaZ (a, θ) · Ẑω(a, θ)dadθ

=

∫∫
x̊aZ (a, θ) · Ẑω(a, θ)dadθ︸ ︷︷ ︸

classical

−
∫

ω(κ(θ), θ)︸ ︷︷ ︸
density at kink

× x∆
a (θ)︸ ︷︷ ︸

size of jump

× κZ (θ)︸ ︷︷ ︸
movement in kink

·Ẑdθ

▶ Terms like these matter at second-order and need to be explicitly
tracked back



Histogram method (Review)

▶ Histogram (bins,mass points) to approximate Ω
▶ grid {zi}Ni=0 represent midpoints of bins
▶ {ωz

i } mass at points {zi}Ni=0

▶ Functions
{
P i (·)

}
so for z ∈ [zi , zi+1] only non-zero values

P i (z) =
zi+1 − z

zi+1 − zi
, P i+1 (z) =

z − zi
zi+1 − zi

.

▶ P i (z) : the probability z is assigned to bin with midpoint zi .

▶ Applications: Linear approximates for aggregates and LOM
▶

∫
x (z , θ) dΩ ≈

∫ ∑
i x (zi , θ)ω

z
i dF (θ)

▶ ω̃z
j (Θ, ω) ≈

∑
i ω

z
i

∫
P j (z̃ (zi , θ,Θ, ωz)) dF (θ)

▶ Standard approach: Differentiate after applying discretizing using
histogram method



Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ≈
∑N

i=0 P i (z) f (zi ). Now...

▶ Expand LHS f (z + ẑ)

f (z) + f ′ (z) ẑ +
1

2
f ′′ (z) ẑ2 + o

(
ẑ2
)

▶ Expand RHS
∑N

i=0 P i (z + ẑ) f (zi )

N∑
i=0

P i (z) f (zi ) +
N∑
i=0

P i
z (z) f (zi ) ẑ +

1

2

N∑
i=0

P i
zz (z) f (zi ) ẑ

2 + o
(
ẑ2
)

▶ Now take limits as N → ∞
▶ zeroth order

∑N
i=0 P

i (z) f (zi ) → f (z)



Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ≈
∑N

i=0 P i (z) f (zi ). Now...

▶ Expand LHS f (z + ẑ)

f (z) + f ′ (z) ẑ +
1

2
f ′′ (z) ẑ2 + o

(
ẑ2
)

▶ Expand RHS
∑N

i=0 P i (z + ẑ) f (zi )

N∑
i=0

P i (z) f (zi ) +
N∑
i=0

P i
z (z) f (zi ) ẑ +

1

2

N∑
i=0

P i
zz (z) f (zi ) ẑ

2 + o
(
ẑ2
)

▶ Now take limits as N → ∞
▶ first order

∑N
i=0 P

i
z (z) f (zi ) ẑ =

f (zi+1)−f (zi )

zi+1−zi
→ f ′ (z) ẑ



Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ≈
∑N

i=0 P i (z) f (zi ). Now...

▶ Expand LHS f (z + ẑ)

f (z) + f ′ (z) ẑ +
1

2
f ′′ (z) ẑ2 + o

(
ẑ2
)

▶ Expand RHS
∑N

i=0 P i (z + ẑ) f (zi )

N∑
i=0

P i (z) f (zi ) +
N∑
i=0

P i
z (z) f (zi ) ẑ +

1

2

N∑
i=0

P i
zz (z) f (zi ) ẑ

2 + o
(
ẑ2
)

▶ Now take limits as N → ∞
▶ second order

∑N
i=0 P

i
zz (z) f (zi ) ẑ

2 = 0 ↛ f ′′ (z) ẑ2



Why does Histogram method fail?

▶ Tractability of histogram methods come from “uniform” lotteries
▶ preserves mass and conditional means∑

i

P i (z) = 1

∑
i

P i (z) zi = z

▶ which works for first-order but not higher in presence of curvature

▶ Our approach discretizes after differentiating
▶ approximates f ′′ (z) ẑ instead of

∑N
i=0 P

i
zz (z) f (zi ) ẑ

2

▶ works for all orders

▶ Show later in the application than the missing terms can affect
conclusions details



LoM of Ω

d

dθ′ Ω̂t+1⟨a′, θ′⟩ = −
∫ Λ(a

′
,θ

′
,a,θ)︷ ︸︸ ︷

δ (a(a, θ)− a′)︸ ︷︷ ︸
ιZ (a−a′)

µ(θ
′
− ρθθ)︸ ︷︷ ︸

ιθ′(θ
′−ρθθ)

aZ ,t(a, θ)︸ ︷︷ ︸
aZ ·Ẑt

dΩ∗⟨a, θ⟩

+

∫
ι (ā(a, θ) ≤ a′)µ(θ

′
− ρθθ)dΩ̂t⟨a, θ⟩.

= − (M · aZ ,t) ⟨a′, θ′⟩

+

∫ Λ(a
′
,θ

′
,a,θ)︷ ︸︸ ︷

δ (a(a, θ)− a′)µ(θ
′
− ρθθ) āa(a, θ)

d

dθ
Ω̂t⟨a, θ⟩dadθ

= − (M · aZ ,t) ⟨a′, θ′⟩+
(
L(a) · d

dθ
Ω̂t

)
⟨a′, θ′⟩
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